

NTSB National Transportation Safety Board

Office of Highway Safety

Truck-Tractor and Cargo Tank Semitrailer Rollover and Fire Interstate Highway 69 Indianapolis, Indiana October 22, 2009

NTSB National Transportation Safety Board

Office of Highway Safety

Opening Statement

Southbound

-465

Accident ocation

 $\left(\begin{array}{c} 0 \end{array} \right)$

00

0

U

9

bound

C

0

NTSB National Transportation Safety Board

Office of Research and Engineering

Truck-Tractor and Cargo Tank Semitrailer Rollover Animation

Indianapolis, Indiana

October 22, 2009

HWY-10-MH-001

Injuries

Truck driver
 Seriously injured

Passenger vehicle occupants

 1 serious injury (Volvo driver)
 3 minor injuries

Parties to the Investigation

 Federal Highway Administration Indiana Department of Transportation Lawrence Township Fire Department Indiana State Police Mississippi Tank Company AmeriGas Propane

Safety Issues

- Driver fatigue management and rollover prevention programs
- Stability control systems and vehicle design
- Cross-slope breaks and protection of bridge pier columns
- Crashworthiness of Department of Transportation specification cargo tanks

NTSB National Transportation Safety Board

Office of Highway Safety

Human Performance Factors

Driver Information

- Current license and endorsements

 Cargo tank and hazardous materials
 Corrective lens restriction

 45 years driving trucks, 15 with
 - cargo tanks
- Current medical card
- No evidence of drug/alcohol use
- No evidence of distractions

Consideration of Fatigue

- Driver could set work hours
- Uncertainty in sleep opportunity
- Uncertainty in sleep obtained
- Wide range of possibilities
- Insufficient information to determine fatigue

Fatigue Management Programs

- Displayed poor fatigue management
- Role of fatigue in rollovers
- Fatigue management programs
- AmeriGas practices
- Driver may be representative

Rollover Prevention Program

- Rollover is a problem "Vehicle Incident Prevention Program" not effective for rollovers Rollover awareness efforts Comprehensive rollover prevention program
- Australian program successful

Summary

 Cannot determine whether driver was fatigued

Poor fatigue management by driver

Rollover is a problem

NTSB National Transportation Safety Board

Office of Highway Safety

Vehicle Factors

Rollover Prevention

Cargo tanks prone to rollover:

6% of fleet, 31% of fatal rollover accidents

Approaches

1. Stability control systems

- Adding technology
- Prevent excessive curve speed rollovers
- Prevent loss of control from oversteer and understeer

2. Vehicle design

- Lower and wider
- Prevent all types of rollovers

Stability Control Systems

Roll Stability Control (RSC)

 Tractor or trailer based

 Electronic Stability Control (ESC)

 Tractor based

With ESC

Images courtesy of Bendix Commercial Vehicle Systems LLC

Without ESC

Stability Control Systems

- Market facts
 - Bendix, Meritor WABCO, Haldex
 - Available on all new tractors and trailers
 - Cost range \$600 \$2,000
 - On the market for 10 years
 - 100,000 RSC and ESC units installed as of 2009 (ATRI)
 - 25% of tractors will have ESC by 2012 (NHTSA)
 - No current requirement for ESC on heavy vehicles

Stability Control Systems

- ESC required for passenger vehicles

 Loss of control accidents reduction (NASS data)
 40% with cars, 70% with SUVs
 NHTSA issued final rule in April 2007
 - All vehicles be equipped with ESC by model year 2012
- Benefits of RSC and ESC for heavy vehicles
 2009 NHTSA Study
 - RSC could prevent 3,489 crashes, 106 fatalities, and 4,384 injuries each year \$1.4 billion savings
 - ESC could prevent 4,659 crashes, 126 fatalities, and 5,909 injuries each year \$1.7 billion savings

Summary

 Previous NTSB recommendations on stability control standards (Dolan Springs)

 Stability control systems for ALL commercial vehicles

Vehicle Design

Design considerations
Tank structural integrity
Ground clearance
Loading heights
Size and weight

Roll Stability can be improved by

 Lowering center of gravity height (CG)
 Increasing track width

Vehicle Design

Lowering CG

- Fifth wheel height reduction
 - From 49 50 inches to 40 inches
- Changing tank shape
 - Wider, elliptical, and drop-center

Vehicle Design

NTSB

Summary

Performance-based standards

 Design rollover resistant characteristics

-Direct attention to vehicle design

NTSB National Transportation Safety Board

Office of Highway Safety

Highway Factors

Cross-Slope Break

AASHTO standards

 7 percent (1950s and 1960s)
 8 percent (current standard)

Cross-Slope Break Research

 Limited research conducted 1981 FHWA study Simulation used a passenger car Driver discomfort increased with shoulder slope No research found to address heavy trucks

Best practices approach

- Knowledge gained at NTSB Public Hearing
- Options to assist state transportation agencies

W-Beam Guardrail

 Primarily designed to redirect passenger cars and pickup trucks Overall height – 30 inches Bridge columns located within clear zone -14 feet from the edge of traveled way -6 feet from the guardrail

Risk Assessment

- Existing bridges
- Higher standard of bridge column protection
- Documentation limited
- New construction represents small percentage of overall number of bridges

Indianapolis Connection Ramp

- Level of protection had not changed in 40 years
- Upgrading existing roadside barriers generally not high on list of priorities
 If new bridge, 42-inch-high concrete barrier would be required

Before and After Condition

Before

30-inch-high W-beam guardrail

45-inch-high concrete barrier

After

NTSB Safety Recommendations

H-94-5, Evergreen, AL, 1993

Closed–Acceptable Alternate Action

H-95-32 & 33, White Plains, NY, 1994

H-95-32, Closed–Acceptable Alternate Action

– H-95-33, Closed–Acceptable Action

Attributes of Risk Assessment

 Two specific attributes Redundancy and continuity Prevented I-465 overpass from collapsing Prioritize bridges in terms of vulnerability to collapse and damage

FHWA position in the past

- Target the most unsafe locations
- Focused and strategic
- Proactive instead of reactive

NTSB National Transportation Safety Board

Office of Highway Safety

Hazardous Materials Factors

Hazardous Materials Release

Cargo Tank Damage

Structural Integrity Requirements

- Stress to the cargo tank must account for
 - Maximum working pressure, plus
 - Liquid surge force of twice the weight of a full load
- Varying degrees of relevance to different tank types
- Federal regulations do not address external impacts to tank surfaces

- Cargo tank accident performance standards needed
- Analyze accident data to identify susceptible cargo tank structures
- Modeling and testing
- Develop improved design criteria

Trend Analyses

- Population of cargo tanks by DOT specification unknown
- Data must be normalized to conduct risk analyses
- DOT and industry studies based on uncertain cargo tank population estimates

Statistical Data

- Absence of distribution data for DOT-specification cargo tanks
- Limited ability to perform accurate trend analyses
- Insufficient information collected from motor carriers

