Safety for rear seat occupants

- We have been looking for ways to further enhance protection in rear seats
- Issues with putting traditional frontal impact airbags in rear seats:
 - Rear seat occupants are typically children
 - Parents are advised to place children in rear seats to eliminate exposure to frontal impact airbags
Question

Is there a way to bring some of the benefits of frontal impact airbags to the rear seat?

Answer:

Maybe with an Inflatable Belt...

What is an Inflatable Belt?

- A tubular airbag sandwiched between two pieces of shoulder belt webbing

- In the event of a crash, the airbag inflates across the chest in 10 – 20 ms
IB Potential Benefits

- Inflation of the airbag portion of the belt and the associated increased size, pretensioning, and load-limiting should:
 - help reduce occupant head excursion
 - help limit occupant neck loads
 - help distribute belt load over more of the chest, reducing pressure & risk of chest injury

IB Potential Benefits

- May help enhance protection in frontal impacts, side impacts, and other crash modes
- May bring some benefits of frontal impact airbags to the rear seat with less risk of unintended consequences
- May have benefits for all occupants, but especially children, smaller occupants, and elderly occupants
Current System Configuration

Inflated Cushion Zone -- Tongue to D-ring
(Cushion Does Not Go Over D-ring)

Standard Webbing

Shoulder Belt Retractor
(ELR)

Tubular Webbing

Buckle with inflator attached

Tongue modified to allow gas flow

Lap Belt Retractor
(ALR/ELR)

Gas Flow Path

Component Detail

Latch Plate

Buckle and Inflator
Rear Seat Passenger 6 yr Old Dummy Results

![Graph showing HIC, Chest G's, and Chest Deflection results for normalized Standard Seatbelt and Normalized Inflatable Seatbelt.]

- HIC: 1 (45% reduction compared to Standard Seatbelt)
- Chest G's: 1 (84% reduction compared to Standard Seatbelt)
- Chest Deflection: 1 (96% reduction compared to Standard Seatbelt)

Child Seat Installation & Structural Integrity with Inflatable Seatbelts
CRS Installation
- Potential IB/CRS Interaction

<table>
<thead>
<tr>
<th>Lap/shoulder belt routed through RFIS base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder belt routed around infant carrier in RFIS w/o base</td>
</tr>
<tr>
<td>Lap/shoulder belt routed through Rear Facing Convertible</td>
</tr>
<tr>
<td>Lap/shoulder belt routed through Forward Facing Convertible</td>
</tr>
<tr>
<td>Lap/shoulder belt routed through Combination</td>
</tr>
</tbody>
</table>

Exemplar - RFIS

Graco Snugride 32 Manual

- **LATCH**
- **Lap Belt**
- **Lap/Shoulder Belt**

- Carrier w/ Base
 - Model #: Rear Facing Infant Restraint
 - Max Weight: 32 lbs

- Carrier w/o Base
 - NA

13 of 23

14 of 23
Child Seat Conclusion

- Child seat integrity is maintained when an inflatable seatbelt is deployed

Ongoing Actions:
- Presented results to JPMA
- Ongoing discussions with child seat manufacturers to include installation instructions in the manual

What about a Child Sleeping with his/her Head on the Inflatable Seatbelt?
What about children asleep on the belt?

Sleeping Child

Neck Anatomy – 6 YO vs Adult

6 YR OLD ADULT

Superior View of Cervical Vertebra

Anterior View of Cervical Vertebra

Reference: Kumaresan et al. [3]

Note the well developed bilateral uncinate processes and the bifid spinous process.
All the neck measurements were lower than the Injury Assessment Reference Values (IARV)

Tests of PMHS in Sleeping Child Posture

- Static deployment of inflatable restraint system with seated female PMHS (3 subjects)
 - Prior to the bag deployment, subject’s head was rotated and neck flexed so that the lateral surface of the head was in contact with the belt
 - No neck injuries were induced from belt contact or lateral bending
A Ford First – Inflatable Seat Belts!

⚠️ Going Into Production on:

- 2011 Model Year Ford Explorer
 - Introduction in mid Model Year
- Optional in 2nd Row Outboard Seats