FRA Hazardous Materials Research

Francisco González III
Federal Railroad Administration
U.S. Department of Transportation

April 22, 2014
Tank Car Structural Integrity

• Mission…
 – Improve the crashworthiness of tank cars and containers transporting Hazmat

• Goal…
 – Replace existing regulations with performance standards and testing procedures for tank car design
Interaction with VOLPE and Sharma

• **FRA sponsors research**
 • Contracts other entities to conduct the research via:
 • Interagency agreements (IAA)
 – Volpe
 – PHMSA
 – NIST
 • Contracts
 – Sharma & Associates
 – ENSCO
 – TTCI
 • Grants and Cooperative Agreements
 – Renewal Fuels Associations
 – The Sulphur Institute
 – Universities
 • Broad Agency Announcement (BAA)
FRA Sponsored Research

- Damage tolerance analysis
- Mechanical behavior of tank car steels
- Tank car operating environment
- Nondestructive evaluation of tank cars and components
- Rollover derailment dynamics
- Risk analysis
- Requirements for pressure relief valves
- Structural evaluation of stub sill tank cars
- Structural integrity and crashworthiness of tank cars
- Crude oil Classification
- Tank car total containment testing (fire test)
- Objective evaluation of risk reduction from tank car design & operations improvements
Overall Roadmap

Resources
- Modeling Software (LS-DYNA ABACUS)
- TTC Crash Wall
- Sharma
- Volpe Center
- Donated Tank Cars

Program Activities
- Computer Modeling
- Impact Test
- Model Validation

Initial Outputs
- Simulation Results
- Test Results
- Research Reports
- Presentations

Intermediate Outcomes
- RSAC Meetings
- Rule Language
- NPRM
- New Regulation

Long Term Outcomes
- Industry Input
 - New Tank Car Design
 - Reduction in HAZMAT Releases
 - Industry Implementation
Tank Car Structural Integrity: Current & Next Steps

Current:
- Full Scale Side Impact Testing with different type of tank car
 - DOT 111 *(12/2013)*
 - DOT 112 *(02/2014)*
 - DOT 113
 - DOT 105
- Developing Puncture Models with different tank cars
- Verify the models with the actual testing data

Next Steps:
- Evaluate the different protection methods
 - Head protection
 - Side protection
- Select options that provide the best results
- Testing procedures for pressure tank cars
- Modeling and simulations
- Continue improvements

Research Cost:
- Current: 2.5 Million
- Past: 2 Million

Project Partners:
- Sharma
- VOLPE
- TTC
Resources

- **Modeling Software (LS-DYNA ABAQUS)**
 - Using dimensions and measures of the tank car and create simulations of the impact
- **TTC Crash Wall**
 - Use the repeatable testing procedures to perform the crash
- **Sharma**
 - Analyze the model and make an impact speed prediction to puncture
- **Volpe Center**
 - Help develop the testing procedures
- **Donated Tank Cars**
 - Industry providing tank cars to test and obtain the test results
Program Activities

• Computer Modeling
 – Analyzing the problem and making predictions

• Impact Test
 – Perform the side impact and record results

• Model Validation
 – Use the data to validate and calibrate the model for better confidence

Predicted Ram Impact Force
Impact Test of a DOT-112 Tank Car
Impact Speed: 14.7 mph
Tank Integrity Maintained

Impact Test of a DOT-111 Tank Car
Impact Speed: 14.1 mph
Tank Punctured

Tests Performed at Transportation Technology Center
Pueblo, CO
Intermediate Outcomes

- **RSAC Meetings**
 - Input
- **Rule Language**
 - DOT develop
- **NPRM**
 - Receive comments
- **New Regulation**
 - Performance standard and testing procedures
- **Industry Input**
 - Involved

Revised as of October 1, 2010
Questions?

Francisco González , III
Tank Car and Hazardous Materials Project Manager
Office of Research and Development
U.S. Department of Transportation
Federal Railroad Administration
202-493-6076
francisco.gonzalez@dot.gov
Published reports website
http://www.fra.dot.gov/Page/P0151
http://www.fra.dot.gov/eLib/Find#p1_z10_IRT_s23
Backup Slides
Photos of Derailment Pile-Ups
Development of Generalized Impact Scenarios

- Based on Results from
 - Train Derailment Dynamics Research
 - Accident Data and Forensic Evidence

- Idealized Impact Condition
 - Repeatable
 - Analyzable
 - Results in Failure Mode(s) Similar to Accidents
 - Represents Essential Accident Characteristics

- Provides Means of Comparing Alternative Designs
- Provides Means for Qualifying Designs
Framework for Comparative Analyses

Load Case → Design “A” → Evaluate → Develop Evaluation Techniques → Compare Effectiveness Of Designs

Design “B” → Revise
Protective Panel

<table>
<thead>
<tr>
<th>Material</th>
<th>AISI 1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>803 lb (21 psf)</td>
</tr>
</tbody>
</table>
Crude oil Classification

• Shippers may not be correctly classifying shipments of crude oil in accordance with the Hazardous Materials Regulations (HMR)

• Intra-Agency Agreement with Pipelines and Hazardous Materials Association to test samples for
 – Vapor Pressure
 – Flammability
 – Flash point
 – Corrosion of metal
 – Hydrogen Sulfide, etc.

• But how many samples are required to be statistically confident?