

National Transportation Safety Board

Train Braking Simulation Study

Conventional Pneumatic, Trailing Distributed Power Pneumatic, and Electronically-Controlled Pneumatic Brake System Performance

Kevin J. Renze, Ph.D.

Methods to Improve Tank Car Safety

- Operational speed constraints (lower energy)
- Build a better product wrapper
 - Increase tank car shell thickness
 - Full height head shields
 - Protect inflow/outflow valves
 - Improve pressure release valves
 - Add thermal insulation and jacket

- Improve track and car inspection and maintenance
- Advanced brake systems

Advanced Brake Systems

Goal: Dissipate train kinetic energy (as heat)

Method 1: Improve brake signal propagation rate

- Increase the number of paths
- Change the type of path (pneumatic or electronic)

Method 2: Increase car wheel brake force $Car NBR = \frac{car net brake shoe force}{car gross rail load}$

Emergency Brake Signal Propagation

Brake System	Brake Signal Path	Brake Signal Speed	Car Brake Application
Conventional Pneumatic (CONV)	Train Brake Pipe	~950 ft/sec (from head-end)	Sequential; Front-to-rear
Distributed Power Pneumatic (Trailing DP)	Train Brake Pipe	~950 ft/sec (from each end)	Sequential; Front-to-rear; Rear-to-front
Electronically- Controlled Pneumatic (ECP)	Train Electrical Cable	Nearly Instantaneous	Parallel; Nearly Simultaneous

Increase Car Wheel Brake Force

Methods

- Change brake shoe mechanical lever ratio
- Increase target brake cylinder pressure
- Shorten time to fully pressurize the brake cylinder

Yields higher brake shoe force and increased car NBR

- Brake shoe and wheel thermal loads increase
- Loads on track structure change

Air Brake Schematic (Apply Brake)

Air Brake Schematic (Release Brake)

Study Goals

- 1. Quantify train stopping performance capability for each brake system
- 2. Assess quality of the stop by comparing in-train force profiles
- 3. Evaluate kinetic energy dissipation benefits
 - Reduced stopping distance
 - Increased engineer/conductor response time margin

Simulation Study Scope

Train/track properties

- Mass/length (52, 78, 104, 130, 156 tank cars)
- Track grade (-2 to +2 percent)
- Initial speed (20 to 70 mph)
- Brake configuration (CONV, DP, ECP)
- Net braking ratio (10, 12.8, 14 percent)
- Emergency or full service braking
- Locomotive brakes applied or bailed off
- 3,790 simulation scenarios

Assumptions

- Clean, dry rail
- No inoperative brakes
- Head-end, engineer-induced brake application
- No derailment, collisions among cars, or collisions with other obstacles
- No loss of communications

Simulation Tool

- Train Energy and Dynamics Simulator (TEDS)
- Longitudinal train handling and performance applications
- Funded by Federal Railroad Administration
- Developed by Sharma & Associates, Inc.
- Validated against publicly available laboratory, field, and train empirical data

Faster Brake Signal Propagation Results

Relative to CONV 10% NBR baseline, bailed off		Stopping Distance Reduction, Percent		
Braking Configuration	Speed, mph	DP	ECP	
	20	4 to 17	5 to 26	
Emorgonov	30	4 to AT	5 to 19 0	
Emergency	40	3 28.9	44015	
	50	3 to 8	4 to 13	
	20	7 to 46	37 to 75	
Full Sonvice	30	11 to 550	37 to 68	
Full Service	40	1 10 0 39	2 30 10 64	
	50	9 to 37	25 to 60	

Emergency Braking, Increased Car NBR

Relative to respective 10% NBR baseline, bailed off, level grade		Stopping Distance Reduction, Percent					
		12.8% NBR		14% NBR			
Braking Configuration	Speed, mph	CONV	DP	ECP	CONV	DP	ECP
Emergency	20	12	14	15	16	18	19
	40	15	17	17	20	22	23
	60	17	18	19	22	24	24

For a given speed and NBR, each brake system provides comparable emergency stopping distance benefits

Combined Effects, ECP and Increased NBR

Relative to CONV 10% NBR baseline, bailed off		Stopping Distance Reduction, Percent			
Braking Configuration	Speed, mph	ECP 10% NBR	ECP 12.8% NBR	ECP 14% NBR	
Emergency	20	5 to 26	13 to 39	16 to 43	
	30	5 to 19	17 10 339	21 to 38	
	40	4 to 15	13 6 31	22 to 36	
	50	4 to 13	19 to 30	24 to 36	

10% NBR – representative of legacy tank car fleet
12.8% NBR – default ECP target, subject to car rigging and HEU setting
14% NBR – maximum acceptable loaded car NBR

Combined Effects, ECP and Increased NBR

Relative to CONV 10% NBR baseline, bailed off		Stopping Distance Reduction, Percent			
Braking Configuration	Speed, mph	ECP 10% NBR	ECP 12.8% NBR	ECP 14% NBR	
Emergency	20	5 to 26	13 to 39	16 to 43	
	30	5 to 19	17 10 33 9	21 to 38	
	40	4 to 15	137 10 31	22 to 36	
	50	4 to 13	19 to 30	24 to 36	
Full Service	20	37 to 75	42 to 80	45 to 82	
	30	37 to 68	45 10 78	48 to 76	
	40	30 to 64	49 671	44 to 73	
	50	25 to 60	40 to 68	44 to 71	

In-Train Forces and Energy Dissipation

- Lower car-to-car buff forces (75 to 250 thousand lb.) for trailing DP and ECP emergency brake application
- ECP 12.8% NBR, full stop, level grade from speed of 50 mph, relative to CONV 10% NBR baseline
 - Stopping distance reduced 500 550 feet (about 8 to 9 tank cars)
 - Time margin for engineer/conductor corrective or mitigating action increased about 13 seconds
 - Vehicle kinetic energy decrease of 50% or more equates to distance reduction of 850 feet (14 tank cars) and time margin of 27 seconds

Summary

- Due to faster brake signal propagation rates, ECP out-performed DP, which in turn out-performed CONV
- Increasing the NBR for a given brake system yields substantial and comparable emergency stopping benefits
- Stopping distance reduction, ECP 12.8% NBR, 50 mph
 - About 22 to 28% for emergency braking
 - About 43 to 66% for full service braking

Additional Work

- Follow-on NTSB study quantified advanced brake system performance for in-train derailment scenarios
 - Number of cars that stop short of point of derailment
 - Energy dissipated by the brake system for each car
- Train energy dissipation study was peer-reviewed
- Lower and more uniform in-train force benefits of DP and ECP braking remain to be quantified

National Transportation Safety Board