

National Transportation Safety Board

Grain Car Axle Stress Analysis

Xiaohu Liu, Ph.D., P.E.

Overview

- Stress analysis objective
 - Study locations of high stresses under simulated in-service conditions

Key techniques

- Laser scanning
- Finite Element Modeling
- 3-D printing for result visualization

Model Geometry

- Axle and wheels
 - Geometry based on AAR drawings with simplifications
- Void

Modeling the Internal Void

Simulated Loading on Rotating Axle

 Journal load on a rotating axle simulated as multiple static loading scenarios

Finite Element Model

Deformed Axle When Loaded

Deformation magnified 50x

Stress Analysis Results

- Intact axle
 - Highest stresses on axle surface
 - Stress magnitude is low

Peak bending stress / 14.3 ksi

- Axle with internal void
 - Highest stresses on void edges
 - Stress magnitude is high

Peak bending stress \ 30.8 ksi

3-D Printing for Visualization

Conclusion

- Internal void with sharp edges caused local stresses that were significantly higher than bending stresses on axle surface
- The axle was prone to fatigue cracking from inside

National Transportation Safety Board