GIS @ NTSB: The Next Steps

Dr. David J. Cowen
Chair, National Geospatial Advisory Committee
Outline

• Role of GIS data and technologies in transportation safety.
• Institutional Issues - FGDC and NGAC
 – FGDC Mission
 – The Transportation Theme
 • Role of DOT (GAO Report)
 – NGAC initiatives
 – Potential linkage to NTSB
• Data accessibility, standard, and interoperability
 – Streets and Addresses
• Long Term impacts of driverless vehicles
1. Role of GIS data and technologies in transportation safety.
Typical NTSB Highway Accident Report
Non – GIS

Figure 2. Accident scene diagram.

Figure 3. Map showing the motorcoach’s travel area and the accident location.
Safety Oriented GIS Events

A Comprehensive Process for Linear Referencing

Kevin M. Curtin, Greta Nicoara, and Rumana Reaz Arifin

Figure 9. Intersection of linear and point events
GIS Context

Static

BTS GIS Data

Real Time

Legend

- AADT
- 0 - 1126
- 1126 - 35616
- 35617 - 72801
- 72802 - 134959
- 134960 - 222320

License

AADT
- 0 - 18810
- 18811 - 49335
- 49336 - 131304
- 131305 - 194485
- 194486 - 282000

NTSB 2012
GIS - Point and Linear Events
Patterns and Context
Custom GIS Server Analysis

Show Me the Top 25 Crash Locations
The cracks are showing

America has a grand tradition of national planning, from Thomas Jefferson's vision for roads and canals in 1808, which influenced policy for the next century (and led to America's first transcontinental railway) to Dwight Eisenhower's Federal Highway-Aid Act of 1956, which created the interstate system. Such plans stand in stark contrast to the federal government's strategy today. America invests a mere 2.4% of GDP in infrastructure, compared with 5% in Europe and 9% in China. America's ageing water infrastructure is sorely underfunded: the Environmental Protection Agency forecasts an $1 billion annual gap in meeting costs over the next 20 years.

The country's transport network is similarly dysfunctional, says a recent Urban Land Institute report. Important gateways, such as the ports in Los Angeles and New York, are choked. Flight delays cost at least $85 billion each year in lost productivity. Commutes are more dismal than ever. Congestion on roads costs $78 billion annually in the form of 4.2 billion lost hours and 2.9 billion gallons of wasted petrol, ac-

last summer. In 2005 the American Society of Civil Engineers estimated that $1.6 trillion was needed over five years to bring just the existing infrastructure into good repair. This does not account for future needs. By 2020 freight volumes are projected to be 70% greater than in 1998. By 2050 America's population is expected to reach 430m, 50% more than in 2000. Much of this growth will take place in metropolitan areas, where the infrastructure is already run down.

No little plan needed
Measure, Map, Monitor & Manage Structurally Deficient Bridges
2. Institutional Issues - FGDC and NGAC

• FGDC Mission
• The Transportation Theme
 – Role of DOT (GAO Report)
• NGAC initiatives
• Potential linkage to NTSB
FGDC - Mission / Authority

The Federal Geographic Data Committee (FGDC) is an interagency committee that promotes the *coordinated development, use, sharing, and dissemination* of geospatial data on a national basis.

“...advance the goals of the National Information Infrastructure; and to avoid wasteful duplication of effort and promote effective and economical management of resources by Federal, State, local, and tribal governments...” (Clinton Executive Order 12906)

Authority: The Office of Management & Budget (OMB) established the FGDC in 1990, and re-chartered the committee in its August 2002 revision of Circular A-16, “Coordination of Geographic Information and Related Spatial Data Activities.” Executive Order 12906 assigns NSDI implementation responsibility to the FGDC.
Figure: Overview of the structure of the various components of the FGDC
Transportation is a Framework Dataset

Framework Data: Seven themes of geospatial data that are used by most GIS applications. These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features.

Source:
OMB – A-16

• **Transportation:** Department of Transportation, Bureau of Transportation Statistics

 Transportation data are used to model the geographic locations, interconnectedness, and characteristics of the transportation system within the United States. The transportation system includes both physical and non-physical components representing all modes of travel that allow the movement of goods and people between locations.

• **Transportation (Marine):** USACE
Proposed New Data Themes -

Status of Theme Lead Agencies and Theme Leads

<table>
<thead>
<tr>
<th>Theme</th>
<th>Lead Agency</th>
<th>Theme Lead</th>
<th>Contact Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biota</td>
<td>DOI/USGS</td>
<td>Theme Lead Candidate**</td>
<td>Marcia McNiff</td>
</tr>
<tr>
<td>Cadastre</td>
<td>DOI/BLM</td>
<td>Point of Contact***</td>
<td>Don Buhler</td>
</tr>
<tr>
<td>Climate and Weather</td>
<td>Commerce/NOAA</td>
<td>Theme Lead Candidate</td>
<td>Anne Ball</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>DOI/NPS</td>
<td>Theme Lead Candidate</td>
<td>Deirdre McCarthy</td>
</tr>
<tr>
<td>Elevation</td>
<td>DOI/USGS, Commerce/NOAA</td>
<td>Theme Lead Candidate</td>
<td>Tracy Fuller, Jeff Ferguson</td>
</tr>
<tr>
<td>Geodetic Control</td>
<td>Commerce/NOAA</td>
<td>Theme Lead Candidate</td>
<td>Juliana Blackwell</td>
</tr>
<tr>
<td>Geology</td>
<td>DOI/USGS, DOI/BOEM</td>
<td>Theme Lead Candidate</td>
<td>Dave Soller, George Dellagiarino</td>
</tr>
<tr>
<td>Governmental Units, and Administrative and Statistical Boundaries</td>
<td>Commerce/NOAA</td>
<td>Theme Lead Candidate</td>
<td>Lynda Liptrap</td>
</tr>
<tr>
<td>Imagery</td>
<td>DOI/USGS, USDA/FSA</td>
<td>Theme Lead Candidate</td>
<td>Dick Vraga, Shirley Hall</td>
</tr>
<tr>
<td>Land-Use Land Cover</td>
<td>DOI/USGS, USDA/FS</td>
<td>Theme Lead Candidate</td>
<td>Jonathan Smith, Ken Brewer</td>
</tr>
<tr>
<td>Real Property</td>
<td>GSA</td>
<td>Theme Lead Candidate</td>
<td>John Sullivan</td>
</tr>
<tr>
<td>Soils</td>
<td>USDA/NRCS</td>
<td>Theme Lead Candidate</td>
<td>David Hoover</td>
</tr>
<tr>
<td>Transportation</td>
<td>DOT</td>
<td>Theme Lead Candidate</td>
<td>Raquel Hunt</td>
</tr>
<tr>
<td>Utilities</td>
<td>BSEE, DOE (TBD)*</td>
<td>Theme Lead Candidate</td>
<td>Warren Williamson</td>
</tr>
<tr>
<td>Water-Inland</td>
<td>DOI/USGS, DOI/FWS</td>
<td>Theme Lead Candidate</td>
<td>Steve Aichele, Bill Willen</td>
</tr>
<tr>
<td>Water Oceans Coasts</td>
<td>Commerce/NOAA</td>
<td>Theme Lead Candidate</td>
<td>Tony LaVoi</td>
</tr>
</tbody>
</table>

* Conversations about a specific Agency Theme Lead resource are underway.

** The nominated Theme Lead will be listed as a “Theme Lead Candidate” until the nominee is approved by the Theme Lead Agency SAOGI and Executive Theme Champion.

*** An agency contact is listed as “point of contact” if they indicated they are not yet ready to appoint a Theme Lead.

**** An Agency contact is listed as FDGC Coordination Group Member when there has been no nomination of a Theme Lead or a point of contact other than the FDGC CG member.
Proposed Transportation Datasets

<table>
<thead>
<tr>
<th>Dataset Name</th>
<th>Theme</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Census Address Range-Feature Name Relationship File</td>
<td>Transportation</td>
<td>DOC-Census</td>
</tr>
<tr>
<td>Census Address Ranges Relationship File</td>
<td>Transportation</td>
<td>DOC-Census</td>
</tr>
<tr>
<td>Census All Roads Dataset</td>
<td>Transportation</td>
<td>DOC-Census</td>
</tr>
<tr>
<td>Inland Electronic Navigation Charts (IENC)</td>
<td>Transportation</td>
<td>DOD-USACE</td>
</tr>
<tr>
<td>National Transportation Dataset - National Map</td>
<td>Transportation</td>
<td>DOI-USGS</td>
</tr>
<tr>
<td>National Transportation Atlas DataBase-Airports Dataset</td>
<td>Transportation</td>
<td>DOT-BTS</td>
</tr>
<tr>
<td>National Transportation Atlas DataBase-Rails Dataset</td>
<td>Transportation</td>
<td>DOT-BTS</td>
</tr>
<tr>
<td>National Transportation Atlas DataBase-TransitLines Dataset</td>
<td>Transportation</td>
<td>DOT-BTS</td>
</tr>
<tr>
<td>National Transportation Atlas DataBase-TransitStation Dataset</td>
<td>Transportation</td>
<td>DOT-BTS</td>
</tr>
<tr>
<td>Census Rails Dataset</td>
<td>Transportation</td>
<td>DOC-Census</td>
</tr>
<tr>
<td>Traffic Analysis Zone (Census 2000)</td>
<td>Transportation</td>
<td>DOC-Census</td>
</tr>
</tbody>
</table>
GAO Report - November 26, 2012
Need to reduce duplication

United States Government Accountability Office

GAO

Report to the Committee on Homeland Security and Governmental Affairs,
U.S. Senate

November 2012

GEOSPATIAL INFORMATION

OMB and Agencies Need to Make Coordination a Priority to Reduce Duplication
GAO Recommendations to DOT

Secretary designate a *senior agency official* who has department wide responsibility, accountability, and authority for geospatial information issues.

Specific recommendations

- Prepare, maintain, publish, and implement a *strategy* for advancing geographic information and related geospatial data activities appropriate to its mission.
- Develop a *policy* that requires the department to make its geospatial metadata available on the clearinghouse.
- Develop and implement internal *procedures* to ensure that it accesses the NSDI clearinghouse before it expends funds to collect or produce new geospatial data to determine
 1. whether the information has already been collected by others and
 2. whether cooperative efforts to obtain the data are possible.

Source: GAO 13-94, Nov 2012
GAO Recommendations Continued

• We further recommend that the Secretary of Transportation direct the transportation theme point of contact to take the following three actions.
 – • Prepare goals relating to all datasets within the transportation theme that support the NSDI, and as needed, collect and analyze information from user needs and include those needs in the theme-related goals.
 – • Develop and implement a plan for the nationwide population of the transportation theme that addresses all datasets within the theme; and that includes
 • (1) the development of partnership programs with states, tribes, academia, the private sector, other federal agencies, and localities that meet the needs of users;
 • (2) human and financial resource needs;
 • (3) standards, metadata, and the clearinghouse needs; and
 • (4) a timetable for the development for the theme.
• Create and implement a plan to develop and implement transportation theme standards.
Standards

• The FGDC has adopted the United States *Thoroughfare, Landmark, and Postal Address* Data Standard (FGDC-STD-016-2011).
Overview of Draft Street Address Standard

Address Standards Working Group

Co-Chairs:
Martha Lombard Ed Wells Hilary Perkins
Spatial Focus, Inc. DC OCTO Jacobs Civil, Inc.

Sara Yurman Carl Anderson
Spatial Focus, Inc. Fulton County, GA

October 2006
Thoroughfare Classes

A thoroughfare address specifies a location by reference to a thoroughfare.

A thoroughfare in this context is a road or other access route (for example, a walkway, railroad or river) by which the addressed feature can be reached.

- **Site:** 1230A North Main Street Extended
- **Landmark-Site:** City Hall, 410 Main Street
- **Intersection:** Seventh Street and D Street
- **Two-number Range:** 110-126 Main Street
- **Four-number Range** (TIGER format):
 - 100-130, 101-135 Main Street
- **Unnumbered Thoroughfare:** Fagaima Road
Part 3: Street Address Data Quality

- Goal: Define quality control for addresses (not redefine principles of spatial quality)
- Existing standards and documents describing spatial data quality
 - Content Standard for Digital Geospatial Metadata (CSDGM)
 - Topic 11: OpenGIS Metadata (ISO/TC 211 DIS 19115)
 - Supporting ISO Geographic Information standards
 - 19113: Quality principles
 - 19114: Quality evaluation procedures
 - Spatial Data Transfer Standard (SDTS)
- All the standards describe spatial data quality in similar terms
NGAC Initiatives
NGAC – Geospatial Information Services for the Nation

• Overarching recommendation: The FGDC responsibilities for leadership, management and coordination of geospatial information and services across government, including continuing management of the Geospatial Platform and its supporting data, must assume a central role in the policy, budgetary, and procurement process related to geospatial programs.

• Outcome: FGDC has greater authority, a more comprehensive funding strategy, and permanent staffing to implement a more robust, efficient, reliable, cost effective level of Geospatial Information Services for the Nation to support decision making.
National Geospatial Strategy

• Stimulating Economic Growth Through Geospatial Technology
• Using Geospatial Information To Control Costs and Save Taxpayer Dollars
• Applying Geospatial Tools To Ensure Public Safety and Decision-Support
Recommendations - Continued

• Fully Implement the Geospatial Platform and Geospatial Portfolio Management
• Implement Coordinated Multi-Agency, Intergovernmental Geospatial Data Initiatives
 – 3-D Elevation Program
 – *Transportation for the Nation*
 – National Land Imaging
 – *National Land Parcel Data*
 – *National Address Data*
 – Imagery for the Nation
 – National Height Modernization System
The Need for a National Address Database

• The NGAC proposes the following Vision Statement for a National Address Database.

“The National Address Database is an authoritative and publicly available resource that provides accurate address location information to save lives, reduce costs, and improve service provision for public and private interests.”
National Address Database

<table>
<thead>
<tr>
<th>USERS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMA</td>
<td>Pinpoint disaster areas, provide relief</td>
</tr>
<tr>
<td>Emergency Response, E9-1-1</td>
<td>Emergency response by first responders (police, fire, ambulance, rescue)</td>
</tr>
<tr>
<td>Department of Homeland Security</td>
<td>Locate and protect critical infrastructure</td>
</tr>
<tr>
<td>Public Safety</td>
<td>Crime analysis and response, incident/citation tracking</td>
</tr>
<tr>
<td>Voter Registration</td>
<td>Precinct assignment</td>
</tr>
<tr>
<td>State Dept. of Revenue</td>
<td>Sales tax collection and distribution</td>
</tr>
<tr>
<td>USPS, UPS, FedEx</td>
<td>Mail and package delivery</td>
</tr>
<tr>
<td>Census Bureau</td>
<td>Mail census and survey forms, geocode responses; Census gathering and tracking; locate non-respondents</td>
</tr>
<tr>
<td>Health and Human Services Agency</td>
<td>Track medical benefits, disease, births/deaths, and vulnerable populations</td>
</tr>
<tr>
<td>Call Before You Dig (8-1-1)</td>
<td>Infrastructure protections, development coordination</td>
</tr>
<tr>
<td>Department of Transportation</td>
<td>Locate traffic accidents, access to FHWA funds to improve dangerous non-state roads</td>
</tr>
<tr>
<td>Utilities (public & private)</td>
<td>Hookup, service calls, billing</td>
</tr>
<tr>
<td>Map and address companies (e.g. MapQuest, Navteq and TomTom)</td>
<td>Repackage/reformat accurate data for insurance companies, location based service companies and utilities</td>
</tr>
<tr>
<td>Retail/Services (e.g., Sears, local plumber)</td>
<td>Delivery of goods and services, new site locations</td>
</tr>
<tr>
<td>Assessor/Taxation</td>
<td>Property and owner location</td>
</tr>
<tr>
<td>Planning & Zoning Office</td>
<td>Building permit, planning studies</td>
</tr>
</tbody>
</table>
Data - Linkage to NTSB

- Place accidents and safety into geographic context
 - Quantitative and qualitative attributes to transportation features
- Measure, Map, Monitor and Manage transportation infrastructure to support safer movement of people and freight
- Identify patterns and associated causes for accidents
- Recommend preventative measures
 - Speed limits
 - Crossing hazards
 - Guard rails
 - Signage
 - Bridge maintenance
3. Data accessibility, standard, and interoperability

- Geospatial Platform
- Streets and Addresses
Executive Support for a Common Platform

THE GEOSPATIAL PLATFORM CONCEPTUAL MODEL

The Geospatial Platform is envisioned as a managed portfolio of common geospatial data, services and applications contributed and administered by authoritative sources and hosted on a shared infrastructure. Hover over the graphic to learn more.

Customers/Users

Offering Services

Shared Infrastructure

Governance/Segment Architecture/Portfolio Management

Providers/Partners

COMMON DATA

COMMON SERVICES

COMMON APPLICATIONS
Platform Provides Opportunity for NTSB
GAO Highlighted the Need to Coordinate National Highway Data Base

Duplication of Effort:

Acquisition of nationwide road centerline data across federal agencies and other levels of government, resulting in millions of wasted taxpayer dollars.

- Census Bureau’s (TIGER) system, which uses data procured from local sources for census enumeration and demographic applications.
- USGS’s National Map website, which uses licensed data from a commercial provider to create viewable maps on the National Map. These data are managed by USGS.
- The Department of Defense’s Homeland Security Infrastructure Program, which uses licensed commercial data procured by the National Geospatial-Intelligence Agency for emergency management.
DOT – MAP 21
A Unique Opportunity

- MAP-21 passed legislating the creation of a “Basemap” with the capability to attach Safety attributes.
- Office of Management and Budget cleared HPMS to collect an All-Public dual carriageway Road Network from States DOT
- Office of Planning authorized the use of State Planning and Research (SPR) funds for producing this Network with a waiver to the state Match requirement
- HPMS issued a Memo that requests states to provide a network to include all paved and unpaved public roads in 2014.
Centerlines Versus Ramps and Carriageways

Figure 3. Simple centerline over quasi-carriageway

A Comprehensive Process for Linear Referencing

Kevin M. Curtin, Greta Nicoara, and Rumana Reaz Arifin
Comparison of TIGER and Local Roads
Not Good for Navigation

TIGER Roads Compared to Loudoun Centerlines

Legend
☐ study area
☐ Tiger_Roads
☐ Loudoun Centerlines
Linkage Between Parcel Addresses and Navigation Points – Adding Attributes through Geoprocessing
4. Long Term Societal impacts of driverless Vehicles
This Doesn’t Have to happen
Already

• Cruise on auto pilot
• Slot themselves into awkward parking spaces
• Brake automatically
• Google experimental vehicle

NTSB 2012
Examples

http://slideshow.techworld.com/3405617/20-cars-that-drive-themselves/
Potential Societal Changes Of Driverless Vehicles: The Economist (10/20/2012)

- Boost new car sales – feature rich
- Increased capacity of existing roads (nose to tail)
- New designs
 - No steering wheels, pedals
 - Lighter materials (don’t have to resist crashes)
- Electronics Boost
 - Driver Oriented Entertainment – (don’t have to watch road)
- Buses in convoys
- Travel at night and sleep > Fewer hotels
- Loss of jobs
 - Taxis, car rental could merge into one pick up a d drop off service
 - On demand vehicle rental Supermarkets, department stores, shopping centers – will send a vehicle
Potential Societal Changes Of Driverless Vehicles: The Economist (10/20/2012)

- Obey all laws > Eliminate traffic tickets, traffic cops, meter maids
- Lower revenues – Fewer parking fees
- Eliminate the need for auto insurance
- 2 Million hospital visits / year
 - Less need for emergency rooms etc.
- Longer commutes possible (productive in transit, lower cost / mile) > Exurbs
- Free mothers from car pooling – join the work force
Conclusions

• A robust GIS program will enable the NTSB to improve the way it monitors and manages its safety programs – it deals with fundamental geographic events
• NTSB should work closely with FGDC, DOT, and Census to ensure that the transportation features meet its needs
• NTSB should take advantage of the geospatial platform data and services to initiate its programs
• NTSB must help guide all the stakeholders associated with driverless vehicles and provide recommendations and regulations that ensure these developments are safe, economical and efficient.