Testimony of Jim Hall, Chairman
National Transportation Safety Board
before the Subcommittee on Aviation
Committee on Transportation and Infrastructure
regarding Accident Involving TWA Flight 800
Good morning Mr. Chairman and Members of the
Subcommittee, and thank you for inviting me to appear before you
to discuss the investigation of the TWA flight 800 accident. With
me today at the table are Dr. Bernard Loeb, the Director of our
Office of Aviation Safety, and Dr. Vernon Ellingstad, Director
of our Office of Research and Engineering. Also, many of our investigators,
who have worked virtually full time on this investigation for
the past year, are with us here today.
Mr. Chairman, TWA 800 has been the most extensive investigative
effort in the Safety Board's 30-year history. We have been on
scene on Long Island for a full year, by far a record. The costs
of recovering the victims and the wreckage from this tragedy have
been high. Testing and research have been extensive, but we believe
the money is well spent.
And, the American people can be proud of the selfless determination
of hundreds of investigators from dozens of organizations, who
have worked so diligently to find the cause of this tragedy.
I do not plan to dwell on too much historical information about
the investigation today. The effort has been monumental -- for
example, the Systems Group has had over 40 experts covering the
broad responsibilities of that group. That number is a fraction
of the behind-the-scenes support being provided by the Safety
Board, parties to the investigation, and outside specialists.
I would now like to describe to you where we are today with the
investigation and where we are going in the near future.
Although much of the work in many of our investigative areas has
been essentially completed -- including operations, powerplants,
maintenance records, structures, cabin reconstruction, medical
factors, flight data recorder, cockpit voice recorder, trajectory
analysis, and data base management - we still have months of tests
and research ahead of us. Depending on future developments, we
may reopen certain investigative areas. Areas that have continuing
work include aircraft systems and fire and explosion. I will talk
more about those areas shortly.
Before we could get to this point in the investigation, a massive
underwater search and recovery effort was necessary. Since diving
operations began on July 18, 1996, there were 677 surface-supplied
dives, 3,667 scuba dives, and 209 remotely operated vehicle dives.
After the diving operations were completed on November 2, 1996,
we employed contract trawlers with specially rigged nets to drag
the ocean bottom. Trawling continued throughout the winter and
early spring. Trawling ceased on April 30, 1997, and 85 randomly
selected sites on the ocean bottom were videotaped to ensure that
it was clear of wreckage. The activity ended on May 18.
The diving and trawling operations covered
about 40 square miles of ocean floor. Literally thousands of items
were recovered from the bottom of the ocean and brought to the
hangar for study. We believe we have recovered between 95 and
98 percent of the airplane.
In January 1997, we began to reconstruct the center section of
the airplane in order to be able to better demonstrate the relationship
of the various pieces of structure and systems and the sequence
of the breakup of the airplane. The full- scale reconstruction,
which is about 94 feet long, is the largest ever completed in
the world. It consists of almost 900 pieces of wreckage. It has
been extremely beneficial to the investigation.
Mr. Chairman, I would now like to discuss our progress to date.
There is no evidence of a bomb or a missile impact in the wreckage.
Based on evaluation of the recovered wreckage and a detailed evaluation
of the sequence of events, we have determined that the fuel/air
vapor in the center fuel tank exploded and that the explosion
of the tank initiated the breakup of the airplane. We have not
yet determined what ignited the fuel vapor in the center tank.
The determination of the sequence of events was reached with the
participation and agreement of the parties to the investigation,
as well as outside specialists from the United States and overseas.
Our investigation continues to concentrate on two main areas.
First, we are attempting to determine the ignition source of the
fuel/air vapor in the center tank. Second, we are attempting to
understand the composition and characteristics of the fuel/air
vapor in the fuel tank. To accomplish these two tasks, extensive
testing and research has either been completed or is under way.
We have used a host of independent laboratories and facilities,
and have not cut corners in seeking the best available resources.
Let me detail some of the still ongoing work, starting with the
problem of ignition.
Determination of what ignited the fuel/air vapor
There are generally six primary ignition scenarios or theories
currently being pursued - all of which have been known to us for
many months. We are examining each theory carefully and conducting
laboratory experiments and other scientific tests that will help
us decide which ignition scenarios might be ruled out.
I will now discuss each theory and describe how we are studying
it.
Center tank scavenge pump-This scenario involves the potential
for overheating or other ignition energy from a failure mode in
the scavenge pump that has not been recovered. As to other pumps
in the center fuel tank, we have examined the jettison pumps and
found no evidence that they were involved in the ignition of the
fuel/air vapor. These tests were conducted at the NASA facility
in Huntsville, Alabama.
Although we have not recovered the scavenge pump from the accident
airplane, we have conducted several tests on exemplar scavenge
pumps. We also have researched the service history of the pump
on the accident aircraft, specifically, and scavenge pumps in
general, to determine a possible failure scenario that could explain
the accident.
Static electricity-This scenario involves the potential
for generation of static electricity on an ungrounded component
in the center fuel tank -- Wiggins couplings or Adel clamps --
that could lead to a spark and ignition of the fuel/air vapor.
We have been conducting extensive laboratory tests at the Wright
Laboratory at Wright-Patterson Air Force Base in Ohio, and at
the Naval Research Laboratory in Maryland, to determine whether
static electricity can be generated within the center tank sufficient
to provide a spark that will ignite the fuel/air vapor. Additional
static electricity tests are planned for the next few weeks. We
also have in progress additional laboratory tests at Wright-Patterson
involving fuel system components from TWA flight 800.
Fuel quantity indicating system-This scenario involves
the potential for an electrical short circuit in an airplane wire
bundle outside the tank that leads to a spark or overheating and
ignition from a fuel quantity indication probe or compensator
in the center fuel tank. We have examined the recovered portions
of fuel probes from the center tank, the fuel pump cockpit switches,
and other fuel system components in our laboratories and in the
Wright Laboratory. We have conducted tests of exemplar fuel quantity
probes at the Lear-Siegler factory in Seattle, Washington, to
determine whether an electrical short circuit could be passed
into the tank as an ignition source. We have also examined the
wires, wire bundles, and wire conduits recovered from the TWA
flight 800 wreckage.
No. 3 fuel tank electrical conduit-This scenario is related
to a known history of deterioration of wires in an aluminum conduit
that passes through the No. 3 fuel tank. The scenario involves
the potential for a spark leading to ignition of vapor in the
fuel tank vent tubes and the flame propagating to the center fuel
tank. Examination of the wreckage has so far proved inconclusive,
but this work continues. I will discuss shortly a flight test
that will contain instrumentation to examine this theory.
Small explosive charge-This scenario involves the possibility
that a small explosive charge detonated near the center fuel tank
could lead to ignition of the fuel/air vapors. In August 1996,
we learned about the availability at Brunthingthorpe in the United
Kingdom of a retired Boeing 747 that was to be used for baggage
container explosive hardening tests being conducted by the FAA
and the Defense Evaluation and Research Administration of the
U.K. This test was part of the research engendered by the bombing
of Pan American flight 103 in 1988. We joined this effort to record
and identify the sound spectral signatures of explosives when
recorded on the cockpit voice recorder system.
In late July and early August, we will conduct additional tests
on the Brunthingthorpe airplane. These will involve setting off
small explosive charges in selected locations around the center
wing tank to determine the damage that results and to make comparisons
with the wreckage of TWA flight 800. If the center tank is not
damaged significantly during those tests, we plan to conduct a
full scale fuel/air explosion test.
High speed particle penetration--This scenario involves
the possibility that a high speed fragment from a meteorite, space
debris, or missile warhead could penetrate the center fuel tank
and cause ignition.
In cooperation with the FBI, we have conducted tests and examinations
of the wreckage to determine if a high speed fragment may have
penetrated the center fuel tank and provided an ignition source.
Test plates of aluminum were subjected to high speed penetration
of various size particles and these specimens were compared to
more than 150 holes found in the structures of TWA flight 800.
Experts from Brookhaven Laboratories on Long Island assisted in
this work, as did experts from the Naval Weapons Center at China
Lake, California. To date, we have found no evidence of high speed
particle penetrations; however, that work continues.
Determination of Conditions under which fuel/air vapors in
fuel tanks are explosive, and the minimum energy needed to ignite
the vapors.
Besides the work to determine possible ignition scenarios,
we have been conducting numerous tests, and more are planned,
to better understand the flammability and explosive potential
of Jet A fuel. I need to point out that very little is known about
the composition and characteristics of Jet A fuel, despite its
use for many years. We need to understand the characteristics
of the fuel to evaluate its susceptibility to ignition and to
understand the propogation of the explosion that caused the accident.
For example, we would like to determine where the ignition took
place in the center tank, how it propogated, and how the environmental
conditions affected the event. If we can learn that, we might
be closer to determining what the ignition source was, and we
can develop more definitive corrective actions, both mechanical
and environmental. We have met with specialists from throughout
the world to assist us in this effort.
We recently leased a Boeing 747 for flight tests. The airplane
has been instrumented with temperature and pressure sensors, and
vapor sampling equipment to provide a detailed characterization
of the environment in the center tank and the rest of the fuel
system. It will be flown from JFK International Airport in the
next day or two to determine the temperature profile and chemical
composition of the fuel/air mixture in the center tank under conditions
similar to those of TWA 800. We are being assisted by the Desert Research
Institute of the University of Nevada at Reno,
and we trust that the data gathered from these flight
tests will bring us closer to our goals of determining the cause
of the accident and developing accident prevention measures.
We have been conducting tests at CalTech and the University of
Nevada at Reno to determine the chemical characteristics of Jet
A fuel under a variety of conditions. These tests include measurements
of explosive temperatures, pressures, minimum ignition energy,
and fuel vapor composition. We recently obtained fuel samples
from Athens, Greece to compare with samples taken from an airplane
that has flown from Athens to JFK. Those samples will also be
examined to determine if the characteristics of the fuel change
during flight.
Of course, we had analyzed fuel samples from both JFK and Athens
immediately after the accident.
Once we have determined the chemical composition of the fuel/air
vapor, we plan to conduct scale model tank explosion tests assisted
by experts from CalTech and other laboratories. We have already
conducted small-scale explosion tests using a single chamber test
vessel. Because the Boeing 747 center fuel tank is a more complex
structure, we need to evaluate the effects of its multiple interconnected
compartments on the ignition and explosion physics. Depending
on the results of these scale tests, we may conduct full-scale
tests in which we will blow up one or more center tanks salvaged
from retired Boeing 747s.
Concurrently with the explosion tests, we plan to conduct computer
modeling of the fuel/air explosions to better understand the propogation
of an explosion and the consequent pressures produced throughout
the Boeing 747 center tank.
Mr. Chairman, I need to point out that all of these tests that
I have briefly described are extremely complex and nothing of
this magnitude has ever been conducted before by the Safety Board.
Because of the highly technical nature of the tests, and the potential
danger posed to those conducting them, each phase of each test
is very time-consuming.
I believe that the flight tests that are ongoing this week, the
tests in the United Kingdom, and other tests at various universities
and laboratories will bring us closer to our goal of preventing
similar accidents in the future.
Lastly, as we do in all major airline accidents, the Safety Board
is developing plans to hold a public hearing on this accident
in December in Baltimore, Maryland. Excellent facilities are available,
and Baltimore is a convenient location for many family members
and other participants. At that public hearing, we plan to take
sworn testimony on all of the relevant issues related to this
tragic accident. However, we cannot open a public docket and conduct
a public hearing concerning the evidence we have gathered until
the FBI declares that it is no longer conducting a criminal investigation
into the loss of TWA flight 800. We anticipate that they may do
so in the near future.
Though this investigation is still ongoing, the Safety Board issued
four safety recommendations to the FAA that urged both short-term
and long-term actions to reduce the potential for a fuel/air vapor
explosion in the center fuel tanks of Boeing 747s, as well as
in fuel tanks of other aircraft. We suggested possible means to
reduce the explosive potential of the fuel vapor, such as adding
cold fuel to the center tank before takeoff, providing insulation
or other methods to reduce the transfer of heat from the air conditioning
units beneath the center tank, or inerting the tank by replacing
the explosive vapor with a harmless gas.
FAA responded with a request for public comments in the Federal
Register, posing questions that it wanted answered by the
aviation industry and the scientific community before it acted
on those recommendations. The comment period closes August 1.
The FAA stated that it was concerned that the safety recommendations
proposed major changes in requirements for fuel tank design and
fuel management in transport category airplanes because the current
airworthiness standards of the Federal regulations assume that
the fuel vapor (ullage) in the fuel tanks is flammable. Current
design and certification requirements concentrate on the elimination
of ignition sources. However, we are asking for an additional
safeguard - control or elimination of flammable vapors.
NTSB agrees with FAA that there are questions in need of answers
before agreement on long-term prevention can be reached. We anticipate
working closely and cooperatively with FAA to develop long-term
solutions. But, we also believe that more could be done in the
interim to reduce the possibility of another fuel tank explosion
in the meantime. The probability is already very low, but if it
might be made lower, without significant cost, we believe that
effort should be made. Consequently, on July 1, 1997, the Safety
Board classified the FAA's response to the short term recommendations
as "unacceptable."
As you know, Mr. Chairman, our issuance of recommendations before
completion of an investigation is not unusual; in fact, it occurs
quite often. We issued recommendations 7 days after the Roselawn,
Indiana ATR crash in 1994, and 20 days after the ValuJet crash
into the Everglades last year. We issued recommendations following
the Sioux City, Iowa DC-10 crash on 4 separate occasions before
our final report was adopted, the first less than a month after
the accident.
In addition, it is our regular practice to classify the responses
to our recommendations. There are currently 358 open recommendations
to the FAA, 31 of them - less than 9 percent - are currently classified
as unacceptable response or action.
Mr. Chairman, the Safety Board is fully aware that the safety
record of the Boeing 747 and many other airplanes over the past
few decades has been excellent, and fuel tank explosions have
been extremely rare events. However, the evidence gathered during
the investigation of TWA flight 800 and from other previous accidents
indicates that they do occur and that extraordinary steps may
need to be taken to prevent similar accidents.
Our senior staff and investigators have been meeting regularly
with the FAA and Boeing engineers, as well as outside specialists,
to discuss the complex questions that have been raised by this
tragic accident and to develop appropriate solutions. We all remain
committed to determining the ignition source of the fuel/air vapor
in the center tank of TWA flight 800. However, we also believe
it is imperative to initiate steps toward the reduction of explosive
vapor in fuel tanks. We will continue to work closely with the
FAA and Boeing to devise corrective measures in a timely manner.
Mr. Chairman, let me make something very clear about these recommendations.
We are not saying that our short-term recommendations would prevent
every accident in the future, but we do believe that they would
have prevented the TWA flight 800 accident and some of the previous
accidents involving explosive fuel/air vapors.
Before I close, I would like to mention that, as part of the Safety
Board's new role related to families of victims of airline accidents,
we will be assisting the families in memorializing the first anniversary
of the TWA flight 800 accident next week. Several days of activities
have been planned by the family organizations, and they are being
supported by units of local, state and the Federal government.
Many other organizations from Long Island that were part of the
search and recovery efforts are also assisting the families. At
the families' request, we will provide them access to view the
reconstructed wreckage at Calverton and to answer questions about
the progress of our investigation. We expect about 750 family
members to participate.
I now would be pleased to answer any questions that you may have.